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Abstract

Brain metastases are more common than primary CNS
tumors and confer grave prognosis on patients, as existing
treatments have very limited efficacy. The tumor microenvi-
ronment has a central role in facilitating tumorigenesis and
metastasis. In recent years, there has beenmuchprogress in our
understanding of the functional role of the brain metastatic
microenvironment. In this review, we discuss the latest
advances in brain metastasis research, with special emphasis

on the role of the brain microenvironment and neuroinflam-
mation, integrating insights from comparable findings in
neuropathologies and primary CNS tumors. In addition, we
overview findings on the formation of a hospitable metastatic
niche and point out the major gaps in knowledge toward
developing new therapeutics that will cotarget the stromal
compartment in an effort to improve the treatment and
prevention of brain metastases.

Introduction
Brain metastases are one of the deadliest forms of tumor

metastasis. Arising in 10%–30% of adult patients with systemic
malignancies (1), brain metastases confer dismal prognosis,
with a median survival of less than one year (Fig. 1A; refs. 2, 3).
The main cancer types that frequently metastasize to the brain
are lung, breast, melanoma, renal, and colorectal cancers (2).
Different studies suggest that the incidence of brain metastasis
is twice to 10 times higher than primary central nervous system
(CNS) malignancies (e.g., glioma; refs. 4, 5). Interestingly,
postmortem studies suggest higher incidence of brain metas-
tases compared with clinically diagnosed incidence (6). More-
over, the incidence of brain metastasis appears to be on the rise
(7). Possible explanations for this apparent increase include
better diagnosis of smaller, asymptomatic brain metastasis by
MRI, and improved control of extracranial disease by systemic
therapy, enabling the emergence of otherwise not clinically
manifested metastasis (1, 6).

When discussing brain metastases, it is important to keep in
mind that they are not a single clinical entity: major differences in
the diagnosis, treatment, and prognosis depend on various para-
meters, including the primary tumor from which metastases
developed, suitability for targeted therapies, number of metasta-
ses, stage of extracranial disease, etc. Brain metastasis from dif-
ferent primary tumors can occur early in the clinical course of the
disease, at the time of initial diagnosis (synchronous), or some-
timesmonths or years after surgical removal of the primary tumor
(metachronous). The currently used diagnosis-specific graded

prognostic assessment (DS-GPA) of patients with brain metasta-
ses are associatedwith tumor-specific parameters: TheDS-GPA for
non–small cell lung carcinoma (NSCLC), breast cancer, and
malignant melanoma includes molecular predictive markers,
such as EGFR, Her2, and B-Raf, respectively, to identify subgroups
with a significantly improved overall survival (OS; refs. 8–10). For
example, patients with the best melanoma molecular markers
(mol-GPA) score have an estimatedOS of 34.1months compared
with 7.1 months in the past (8). In addition to molecular
subgroups, theOSof patientswith brainmetastasis also correlates
with the infiltration pattern of macrometastases at the brain
parenchyma/metastatic interface: while metastases of renal cell
cancer are mainly noninfiltrative and are additionally protected
by a highly vascularized collagen capsule, the majority of NSCLC
brain metastases infiltrate into the adjacent brain parenchyma
with tumor cell cohorts, and malignant melanoma cells favor
an angio-cooptive infiltration (11). In general, an infiltrative
phenotype is associated with a poor prognostic outcome (11).
However, the underlying mechanisms that differentiate patterns
of brain metastatic infiltration are poorly understood.

In brain metastasis, earlier studies identified gene signatures in
primary breast cancer cells thatwere associatedwithbrain tropism
(12),while amore recent studydemonstrated branched evolution
that distinguishes the mutation landscape in the primary tumor
from its brain metastases (13). Thus, additional coevolution with
the brain microenvironment may be required to enable brain
colonization by disseminated metastatic cells. There is a growing
understanding that the metastatic microenvironment plays a
crucial role in enabling brain tropism and colonization of dis-
seminated tumor cells. Herein, we summarize the main findings
of recent preclinical studies focused on the biology of the brain
metastatic microenvironment, with emphasis on the role of
neuroinflammation.

The Brain Microenvironment
Reciprocal interactions between cancer cells and the microen-

vironment were shown to contribute to tumor progression and to
organ-specific metastasis (14–17). The brain harbors a unique
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microenvironment: the macroglia cell population, which is com-
posed of 75.6% oligodendrocytes and 17.3% astrocytes and the
microglia that represent 6.5% of the nonneuronal cells (18). The
brainmicroenvironment also includes endothelial cells, pericytes,
ependymal cells, resident and infiltrating immune cells, and other
cell types, which play a crucial role in maintaining physiologic
homeostasis by communications with neurons (Box 1; Fig. 1B;
ref. 18).

Similarly to other organs of the body, cells in the microenvi-
ronment of the brain can sense and respond to danger signals
induced by pathogen invasion or tissue damage, resulting in
instigationof neuroinflammation (19). This physiologic response
in the brain microenvironment is reminiscent to changes that
occur in the brain metastatic niche, as will be discussed herein.
Notably, preclinical studies of brain metastasis and of the inter-
actions of metastatic tumor cells with the microenvironment
mostly rely on murine models. While all models entail certain
limitations (Box 2), they nevertheless provide important insights
on metastatic extravasation, invasion into the brain parenchyma,
growth in the brain, interactions with themicroenvironment, and
therapeutic responses.

Neuroinflammation in Brain Metastasis
Neuroinflammation in the CNS is instigated in response to

damage signals. Cells in the brain parenchyma can sense and
respond to danger signals resulting from pathogen invasion
(pathogen-associatedmolecular patterns, PAMP) or tissue dam-
age (damage-associated molecular pattern, DAMP). In the first
line of response, DAMP/PAMP signals rapidly activate the adja-
cent astrocytes and microglia (45). This locally circumscribed
first line of glial response is very potent in the defense from
pathogenic intruders or in repairing tissue damage without
recruiting other cell types. Thus, astrocytes and microglia are
central in regulating the CNS homeostasis and tissue repair.
However, if this first line of defense is not effective or the
damage/affected area is too large, then full blown neuroinflam-
mation develops. This is characterized by enhanced secretion of
cytokines and chemokines, persistent activation of astrocytes
and microglia, increased blood vessel permeability, and recruit-
ment of immune cells (46, 47). Knowledge on the instigation
and regulation of neuroinflammation mainly originated in
studies of neurologic diseases and CNS injuries (19, 48). Dys-
regulation of these pathways leads to uncontrolled damage
response, which contributes to the pathology of neurodegener-
ative diseases (49), exacerbates vascular injury following stroke
(50), drives autoimmune diseases (51), and facilitates primary
CNS tumors (52).

Many of the changes described in the brain metastatic micro-
environment are reminiscent of these dysregulated tissue damage
responses, including permeability of the BBB (53), instigation of
astrogliosis and neuroinflammation (54), and recruitment of
leukocytes (55), which in turn collectively facilitate metastatic
growth of invading cancer cells (25, 56). Therefore, findings from
these fields may help us understand the roles of cellular brain
components at various phases of brainmetastasis. These parallels
suggest that the physiologic tissue damage response in the brain is
hijacked during colonization by metastatic cells, and neuroin-
flammation is recently emerging as a promising direction to
uncover processes associated with the development of brain
metastases (57–59).

Astrocytes in neuroinflammation
Activation of astrocytes in response to tissue damage is termed

"astrogliosis." It is characterized by upregulation of the

Box 1: Physiologic roles of the different
brain cells

* Neurons are the excitable component of the CNS, their
axons conduct electrical current. The development and
specialization of neurons during embryogenesis is a very
complex and temporally regulated process (20).

* Oligodendrocytes produce myelin, which is essential for
proper electric conduction of neuronal signaling (21, 22).

* Astrocytes have many functional roles in maintaining
brain homeostasis: they regulate potassium and pH levels,
modulate synaptic transmission by glutamate and GABA
uptake, and control the vascular tone and cerebral blood
flow (23). Two main classes of astrocytes include
protoplasmic astrocytes residing within the gray matter
and fibrous astrocytes located in the white matter (21).

* Microglia are specialized resident macrophages in the
brain, which originate in the yolk sac. Microglia secrete
growth factors and inflammatorymediators, scavenge cell
debris, and is involved in the CNS homeostasis (24).

* Endothelial cells and their extracellular matrix form the
blood vessels of the brain. Endothelial cells express efflux
pumps and establish adjacent tight junctions, both of
which are necessary for selective permeability of the
blood–brain barrier (BBB; ref. 25).

* Pericytes are mesenchymal cells, which constitute an
integral part of the neovascular unit of the BBB. Pericytes
occur throughout the vasculature of thebody, but aremost
dense inbrain capillaries. Pericytes regulate cerebral blood
flow (26) and produce proteins of the basal lamina (27).

* Ependymal cells line the ventricles of the brain and are
part of the blood–cerebrospinal fluid (CSF) barrier
(BCSFB; refs. 28, 29).

* Choroid plexus is a specialized organwithin the brain that
produces the CSF and is also part of the BCSFB (28).

* Post-capillary venules: an important part of the BBB.
Composed of at least seven layers: 1, endothelial cells
connected by tight junctions; 2, inner basement
membrane; 3, media, 4, outer basement membrane; 5,
Virchow–Robin space with pericytes, macrophages, and
other cell types; 6, a third basement membrane; 7, the glia
limitans, consistent of astrocyte end-feet (See Fig. 1B).

* Blood–leptomeningeal barrier (BLMB): an important
immunologic barrier, typically activated during
meningitis. Activation switches the cellular andmolecular
composition of the CSF from an immunosuppressive
body fluid to a highly immune active one.

* Infiltrating immune cells can be recruited to the brain via
the BCSFB to the CSF or via the blood capillaries, mainly
via post-capillary venules (29, 30). T cells and monocyte-
derived macrophages contribute to neuronal functions
and are central to neuronal repair (31, 32) and during the
brain response to pathogen invasion and inflammation
(33).
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cytoskeletal glial fibrillary acidic protein (GFAP), upregulation of
proinflammatory genes (60), and identified by the formation of a
"gliotic scar": reactive astrocytes with elongated processes that
form a physical and functional wall around demarcated brain
lesions (61). Astrogliosis has neuroprotective functions that sup-
port neuronal recovery during the acute phase, but may entail
detrimental inflammatory responses that induce further tissue
damage (62). Astrogliosis is also evident in brain metastases:
astrocytes surround and infiltrate brain metastases in mice, and
are recruited to the brain–metastases interface in human brain
metastases (57, 59, 63), and therefore the complex interactions
between astrocytes and tumor cells are a topic of intense research.

Proinflammatory signaling in astrocytes was shown to be
activated by lung cancer cell–derived factors such as macrophage
migration inhibitory factor (MIF), IL8, and plasminogen activator

Box 2: Murinemodels of brain metastasis
to study the brainmicroenvironment and
neuroinflammation

* Models of spontaneous brain metastasis

By definition, a spontaneous model of brain metastasis is
a model in which cancerous cells from the primary tumor
are allowed to detach, invade, circulate, extravasate, and
colonize the brain. The main advantage of utilizing such
models is that they allow investigation of the different
metastatic stages, as well as studying early stages of brain
metastasis in a clinically relevant setting. However, most
spontaneous models are time consuming and do not
always provide high percentages of brain metastasis,
making large cohorts of mice necessary.
* The primary tumors in spontaneous models are either

orthotopically inoculated or arise in a genetically
engineered mouse model (GEMM) of a certain cancer
type. Brain metastasis in GEMMs was reviewed
elsewhere (34, 35).

* Resection of the primary tumor, when feasible, allows
better modeling of the clinical settings, and usually
entails a period of latency before metastatic relapse,
thus enabling a time window for preclinical
preventative studies (36).

* Spontaneous models of brain metastasis can be
established in immunocompetent or in
immunodeficient mice, depending on the source of
the cells to be studied.

Summary of murine models of spontaneous brain
metastasis

& Melanoma:
� RMS: orthotopic (subdermal),

immunocompetent, primary tumor removal.
Micrometastases, 50%; macrometastases, 23%
(37).

� YDFR.CB3: orthotopic (subdermal),
immunodeficient, micrometastases 75% (38).

� 131/4-5B2: orthotopic (subdermal),
immunodeficient, primary tumor removal.
Micrometastases, 66%; macrometastases, 20%
(39).

& Lung
� A549: orthotopic (intrathoracic),

immunodeficient. Macrometastases, 61% (40).
& Breast

� 4T1: orthotopic (intraductal),
immunocompetent, primary tumor removal.
Micrometastasis, 67% (41).

� Fgf4-MCF7: orthotopic (intraductal),
immunodeficient. Macrometastases, 35% (42).

� MDA-MB-231 and CN34BrM: orthotopic
(bilateral intraductal), immunodeficient, NSG
mice. Macrometastases: MDA-MB-231, 100%;
CN34BrM, 90% (43).

* Models of experimental brain metastasis

Experimental metastasis models include the direct
inoculation of tumor cells into the circulation andprovide
a model for hematogenous dissemination of cancer cells
to generate brain metastases.

* Intracardiac injection: inoculation of tumor cells into the
left ventricle of the heart.

* Intracarotid injection: inoculation of tumor cells directly
into the cerebral circulation.

Experimental models are widely used, as they achieve a
high penetrance of brain metastasis in relatively small
cohorts of mice and are a valuable tool for studying
macrometastases, especially in preclinical testing of
therapeutic intervention.
Disadvantages of these models include the technically
challenging nature of injection techniques, and the fact
that the high load of injected cells may not accurately
mimic the clinical setting in which metastasis occurs.

* Models of intracranial tumor cell injections

Tumor cell growth in the brain can be achieved by
intracranial injection: the direct inoculation of tumor cells
from various cancer types directly into the brain tissue.
Intracranial models of brainmetastasis can be established
in immunocompetent or in immunodeficient mice
(including patient-derived xenografts; ref. 44), depending
on the source of the cells to be studied.
Intracranial injections yield rapidly growing brain lesions
and are an important tool to assess the growth pattern of
tumor cells in brain, the various infiltration types and
dissemination into the brain parenchyma, and to test the
efficacy of novel therapeutics in a preclinical setting of full
blown macrometastasis. However, the injection of cells
into the parenchyma may initially cause trauma to the
brain, thus invoking astrogliosis and neuroinflammation.
Therefore, when employing such models, it is important
to design suitable controls.
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A, Epidemiology of brain metastases. Summary of main epidemiologic findings from various primary tumor types that metastasize to brain (percentage of
brain metastasis cases diagnosed; m, months; refs. 1, 2, 171–173). B, The brain microenvironment. Illustration of different cell types in normal brain. The physiologic
roles of different brain cells are detailed in Box 1.
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inhibitor-1 (PAI-1) in coculture experiments (64).Once activated,
astrocytes secrete TNFa, IL6, and IL1b. Such proinflammatory
activation of astrocytes stimulated in vitro proliferation of lung
cancer cells (64). While the molecular players may vary, inflam-
matory activation of astrocytes seems to be a general feature of
brain metastasis: melanoma cell–secreted factors induced IL23
expression in astrocytes, leading to enhanced transendothelial
migration ofmelanoma cells in vitro (65). Notably, astrocytes also
express IL23 during autoimmune diseases, such as multiple
sclerosis (MS; ref. 66). In breast cancer, tumor cell–derived IL1b
activated JAG1 signaling in astrocytes, which in turn promoted
cancer stem cell (CSC) self-renewal in vitro and experimental brain
metastasis in vivo. Brain metastasis-free survival in patients with
breast cancer correlated with lower expression of IL1b, suggesting
clinical relevance of these findings (67). Similarly, secretion of
MMP-1 and COX-2 by brain-metastasizing breast cancer cells
induced expression of CCL7 by activated astrocytes, which in
turn promoted BBB permeability and experimental brain metas-
tasis in vivo (68). These findings implicate the importance of
proinflammatory signaling by astrocytes to promote multiple
aspects of brain metastasis. However, the functional role of
specific cytokines and chemokines that were identified in cocul-
ture studies should be further evaluated in vivo.

Induction of neuroinflammationwas shown to precedemacro-
metastases: brains bearing spontaneous melanoma micrometas-
tases already express higher levels of the inflammatory mediators
CCL17, CCL2, and CXCL10 (37). Notably, CXCL10 was also
shown to be expressed by astrocytes in Alzheimer's disease in
association with senile plaques (69), and in response to LPS
exposure and stroke (60). These findings implicate stromal
cell–derived CXCL10 in neuroinflammation, as well as in the
formation of brain metastasis. Similarly, CCL17, shown to be
expressed bymicroglia in Alzheimer's disease (70), is upregulated
in brains of mice inoculated with vemurafenib-resistant melano-
ma cells (71). This may implicate stromal cell–derived CCL17 in
supporting chemoresistance to BRAF inhibitors. The parallels of
inflammatory mediators in brain pathologies and in brainmetas-
tasis suggest that canonical neuroinflammatory pathways are
hijacked by tumor cells to promote metastases formation and
growth.

The mechanisms by which astrocytes are activated by tumor
cells are still largely unresolved. The close proximity between
astrocytes and tumor cells, resulting from astrogliosis, implicates
reciprocal paracrine signaling as a main communication route
(37, 65, 67, 72–75). Assembly of carcinoma–astrocyte gap junc-
tions composed of connexin 43 (Cx43), resulting in proinflam-
matory activation of astrocytes and enhanced resistance of tumor
cells to chemotherapy in vitro and in vivo (76–78). This interaction
may represent another aspect of cancer-induced astrogliosis and
gliotic scar formation, physically "bridging" between astrocytes
and tumor cells. Once recruited and activated by brain-metasta-
sizing cells, astrocytes induce growth-promoting signaling in
tumor cells (76, 79).

The reciprocal interactions of tumor cells and astrocytes were
also shown to contribute to chemoresistance and tumor cell
survival due to upregulation of GASTA5, BCL2L1, and TWIST1
expression in cancer cells in vitro (77).Other studies demonstrated
that bidirectional interactions between astrocytes and breast
cancer cells support chemoresistance via activation of the
endothelin axis (80). Blocking this pathway with an antagonist
of the endothelin receptorwas beneficial in the treatment of breast

and lung cancer experimental brainmetastases (81). Interestingly,
the initial response of astrocytes to brain invasion by tumor cells
was suggested to be antitumorigenic: astrocytes were shown to
induce tumor cell apoptosis via plasmin activator (PA) secretion.
Secretion of Serpins (PA inhibitors) by tumor cells prevented
apoptosis and increased vascular cooption in experimental brain
metastasis (73). Thus, while the early response of astrocytes to
brain invasion by tumor cells may be antitumorigenic, growth-
promoting mechanisms eventually prevail and enable metastatic
growth.

Microglia in neuroinflammation
Microglia are important mediators of the brain response to

tissue damage (82), and are similarly activated at the tumor–brain
interface in brainmetastasis (83, 84). IHC analysis ofmicroglia in
human brainmetastases of NSCLC, breast cancer, andmelanoma
indicated intense microglia activation with evident peritumoral
accumulation and intratumoral infiltration (85). Thus, the local-
ization of microglia is reminiscent of the gliosis response to
traumatic brain injury sites, at the interface between normal and
damaged brain tissue (86).

Proinflammatory signaling in microglia was shown to be
instigated following lipopolysaccharide (LPS) injection, includ-
ing expression of TNFa, iNOS, and IL6 (87). Moreover, targeting
of activated microglia/macrophages was shown to reduce tumor
growth in a model of intracranial injection of breast cancer cells
(84). Microglia were also shown to facilitate invasion of meta-
static breast carcinoma cells in an organotypic ex vivo brain slices
model (88). This proinvasive function of microglia could be
inhibited by microglia depletion, by the WNT inhibitor Dick-
kopf-2, by LPS treatment, or by CXCR4 inhibition, indicating the
molecular pathways involved (82, 88, 89). Moreover, similar to
the role of the PI3Kg pathway in mediating immune suppression
by tumor-associated macrophages (TAM) in primary breast
tumors (90), a recent study demonstrated the activation of PI3K
in patients with breast cancer brain metastases, and identifies its
function as a master regulator of the metastasis-promoting func-
tion of microglia (91).

Findings from primary brain malignancies and from brain
metastasis indicate that the metastasis-promoting functions of
microglia phenotype are induced by tumor cells (92–94). Inter-
estingly, astrocytes were also shown to modulate the recruitment
of microglia to brain metastasis in vivo (95), adding another
dimension to the complex neuroinflammatory networks that
facilitate metastasis. However, while in neurodegenerative
pathologies, astrocytes and microglia were demonstrate to inter-
act reciprocally in mediating inflammatory responses that con-
tribute to disease progression (96, 97), surprisingly little is known
about the molecular factors that underlie the role of microglia in
brain metastasis, and their crosstalk with astrocytes.

Recruited immune cells
Recruited macrophages and T cells are a prominent feature of

neuroinflammation and brain metastasis. However, in most
studies, there is no clear distinction between resident microglia
and recruitedmacrophages regarding identification and function.
A study utilizing multitransgenic mouse models that enable
ontology tracing, demonstrated that bone marrow–derived
macrophages are recruited into primary brain tumors (glioma)
and to experimental brain metastases, where they are repro-
grammed to express distinct inflammatory gene signatures
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(92). These findings are supported by a study that demonstrated
in vitro functional differences between microglia and monocyte-
derived macrophages in facilitating tumor cell invasion, evident
by their response to CSF-1R blockade (89).

Macrophages were shown to infiltrate into experimental breast
cancer brain metastases, and to enhance tumor cell invasion and
colonization via secretion of Cathepsin S (98). Intracranially
implanted breast cancer cells were demonstrated to express high
levels of lymphotoxin b, which propelled the polarization of
infiltrating macrophages toward a tumor-promoting M2-like
phenotype (99), suggesting that metastases-recruited macro-
phages may function in promoting an immunosuppressive brain
microenvironment. Macrophages were also shown to induce
breast cancer cell invasion into the brain via CSF-1 secretion
(89). Interestingly, targeting macrophages in a model of primary
CNSmalignancy (glioma) resulted in blockade of tumor progres-
sion (93).

T cells were also implicated in brain colonization. In intracra-
nial injections of melanoma, breast, and colon cancer cells into
mice, regulatory T cells (Tregs) were shown to infiltrate cancerous
lesions and to mediate immunosuppression (100). In human
brain metastasis, T cells are found mainly at the interface of the
brain parenchyma/brain metastases tissue and in the metastatic
stroma. Several studies suggested that CD8þ T cells may play a
functional role in the microenvironment of brain metastasis.
Moreover, while the density of regulatory T cells is not correlated
with prognosis, high density of CD3þ or CD8þ T cells was shown
to be correlated with better OS (57, 101). A study of experimental
melanoma brainmetastasis inmice reported a similar infiltration
pattern, where most of the CD3þ T cells were CD4þ rather than
CD8þ lymphocytes (85). Interestingly, the infiltration of the
effector T cells was suggested to be facilitated by the presence of
extracerebral tumor lesions, which activated the endothelial cells
of the BBB to enhance leukocyte trafficking into brain metastases
(102). Taken together, these findings implicate the adaptive
immune system in brain metastasis and suggest that immuno-
therapy could be apromising therapeutic avenue for the treatment
of brainmetastasis, as discussed below.However, the recruitment,
trafficking, functions, and activation of T cells in the microenvi-
ronment of brain metastases are still largely unresolved.

Thus, activation of brain stromal cells and recruited immune
cells orchestrates neuroinflammation and facilitates metastatic
growth. These observations support cotargeting of both tumor
cells and the inflammatory stroma in brain metastases.

The BBB and Neuroinflammation in Brain
Metastasis

Brain-metastasizing cancer cells initially encounter the BBB, a
highly specialized vascular structure that selectively controls the
blood flow and its contents into the brain (53). The BBB is
composed of endothelial cells connected by tight junctions,
pericytes and the end-feet of astrocytes, which surround the
basement membrane of blood vessels, effectively limiting passive
paracellular permeability. In addition to this physical barrier, the
BBB contains active molecular transport systems (103), which
impair CNS drug delivery. Importantly, the BBB is also central in
regulating the recruitment and trafficking of peripheral immune
cells into the brain. For example, brain endothelial cells express
abluminaly CXCL12, the ligand for CXCR4, to prevent CXCR4-

expressing leukocytes from infiltrating the brain parenchyma
under normal conditions (104). Similarly, the astrocyte end-feet
express the death ligand CD95L, which, under physiologic con-
ditions, leads to T-cell apoptosis (105). Therefore, under normal
conditions, the BBB also functions as an immunologic barrier.
During active neuroinflammation, T cells and myeloid cells enter
the brain mainly via post-capillary venules and their infiltration
requires not only transmigrating the endothelial cells, but also
overcoming the glia limitans (see Box 1; Fig. 1B). This is enabled
during neuroinflammation by activation of brain endothelial
cells and downregulation of immunologic barrier molecules on
perivascular cells, to permit the entry of peripheral immune cells
to the brain parenchyma. However, very little is known about the
regulation of immune cell infiltration via the BBB in the context of
brain metastases.

Following extravasation in the brain, tumor cells may outgrow,
or remaindormant. Findings frommousemodels of experimental
brain metastasis of breast cancer (106) and melanoma (107)
demonstrated that tumor cells were predominately positioned
along the abluminal surfaces of microvessels in the perivascular
space, suggesting that cooption of blood vessels in the brain and
initial growth on the inner basement membrane is a central
mechanism during the early growth of brain disseminated cells.
Notably, the initial interactions with the brain perivascular niche
may also affect dormancy, as suggested by preclinical imaging
studies in mice, that detected brain-metastasizing cancer cells
(from lung, breast cancer, and melanoma) in a dormant state at
the perivascular niche in the brain (108–110). The specific
mechanisms of vessel interactions and vascular cooption depend
on various molecules, and may be fostered via adhesion with
integrin beta-1 (106), and expression of L1CAM by brain-metas-
tasizing cancer cells (73, 107). Clinical evidence from patients
with melanoma brain metastasis suggested that initial metastatic
growth along blood vessels is operative also in human brain
metastasis (106). Interestingly, astrocytes andperivascularmacro-
phages, which are part of the BBB,may be involved in this process:
a study using various breast cancer cell lines showed that astro-
cyte-derived HGF induced c-MET activation in tumor cells, which
in turn enhanced adhesion to endothelial cells (111). Taken
together, these findings link astrocytes and microglia as part of
the BBB, with tumor cell extravasation, dormancy, and immune
cell trafficking (Fig. 1B).

The brain–tumor barrier
The brain–tumor barrier (BTB) is the vascular system around

andwithin CNS tumors and brainmetastases. Permeability of the
BTB is a subject of debate; some studies suggested that impaired
BBB and permeable BTB are hallmarks of brain metastasis (53).
Conversely, other studies in various mouse models of brain
metastasis (including breast cancer and melanoma), reported
that the permeability of the BTB is vastly heterogeneous, and is
not well correlated with metastatic growth rate (112–115). Inter-
estingly, quantitative fluorescence microscopy in preclinical
tumormodels of glioma comparedwith brainmetastasis of breast
cancer, reported that glioma-associated vasculature is more per-
meable than the vasculature in brain metastases (116).

Increased BBB permeability was shown to be an early event,
associated with the formation of spontaneous brain microme-
tastases in mice (37). Increased permeability may also be
part of the instigated neuroinflammation in the metastatic
microenvironment. CCL2 upregulation in cancer cells resulted
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in increased transendothelial migration of small-cell lung
carcinoma (117).

Moreover, endothelial cells are active mediators of proinflam-
matory signaling that facilitates increased BBB permeability and
enhanced invasion capacity of tumor cells: secretion of TNFa by
brain endothelial cells induced by tumor cell–secreted substance
P, augmented breakdown of the BBB and colonization of breast
cancer cells in brain by modifying the localization and distribu-
tion of tight junctions on brain endothelial cells (118). A study on
breast cancer brain metastasis showed that VEGF secretion from
breast cancer cells induced activation of inflammatory STAT3
signaling in endothelial cells. STAT3 inhibition resulted in
decreased invasion of breast cancer cells to brain, and suppression
of angiogenesis and metastasis (119). These studies suggest that
proinflammatory signaling contributes to increased BBB perme-
ability thus enhancing tumor cell invasion into the brain.

In this context, it is important to ask whether modifying the
brain vessel permeability has therapeutic potential. While at early
stages, enhanced permeability may contribute to metastatic inva-
sion, selectively increasing the BTB permeability in overt brain
metastasis was suggested to improve efficacy of therapeutic tar-
geting in a mouse model of brain metastasis (120). In clinical
studies, whole-brain radiotherapy (WBRT) for brain metastasis
was reported to result in increased BBB permeability in patients
with brain metastases from NSCLC (121). However, future stud-
ies are required to better elucidate the interplay between neuroin-
flammation, BTB permeability, and improved therapeutic deliv-
ery and efficacy of drugs to treat brain metastases.

The Brain Microenvironment and Targeted
Therapeutics

Most chemotherapies, targeted therapeutics, and immunother-
apy that are routinely used systemically to treat metastatic disease
are often less effective in treating brain metastases from solid
tumors. The brain microenvironment is an important determi-
nant in the response to systemic therapeutics, and was shown to
actively mediate resistance to chemotherapy in multiple in vitro
and in vivo mouse studies (77, 80, 122).

Preclinical testing of microenvironment-targeted therapeutics
resulted in some promising outcomes. For example, targeting of
Cathepsin S, secreted by both tumor cells and macrophages
reduced experimental brain metastasis of breast cancer (97) and
cotargeting of tumor cells and VEGF receptor-2 inhibited growth
of breast cancer xenografts in brain (123). In clinical trials,
targeting VEGF-A with bevacizumab was tested in combination
with WBRT in patients with brain metastases from various solid
tumors, but did not prove to be effective (124), and a first-in-
human clinical trial with BLZ945, a drug targeting CSF-1R, is
ongoing for metastatic solid tumors (ClinicalTrials.gov). Preclin-
ical studies also showed that cotargeting astrocytes using maci-
tentan, an antagonist of the endothelin receptors, was beneficial
in experimental brain metastasis of lung and breast cancers (81,
125). The results from preclinical studies emphasize the potential
advantages of therapeutic combinations that include targeting of
the brain microenvironment (Table 1). Nevertheless, data on the
benefits of microenvironment-targeted therapeutics in brain
metastases is very limited, as most clinical trials of targeted
therapeutics are focused on molecules expressed by cancer cells
(126, 127).

Immunotherapy for treatment of brain metastasis
The approval of immunotherapeutic strategies and immune

checkpoint blockade dramatically changed the landscape of treat-
ment strategies for several cancer types, in particular melanoma,
NSCLC, and renal cell carcinoma (128), which have a high rate of
brain metastasis. Brain metastases originating in tumors with a
high mutagenic load (such as melanoma and lung cancer) are
likely to be better candidates for immune checkpoint therapy.
Indeed, immune checkpoint inhibition with mAbs targeting the
CTLA4 (Ipilimumab, anti-CTLA-4) and antibodies that target the
programmed cell death protein 1 (nivolumab, pembrolizumab,
anti-PD-1) have revolutionized the treatment of metastatic mel-
anoma (129).

Findings of T-cell composition and infiltration in patients with
brainmetastasis suggest that these considerationsmay be relevant
also to brain metastatic relapse: while some patients have very
little TILs inbrain, highdensity ofCD3þorCD8þT cells correlated
with better OS (101, 130). Notably, expression of the PD-1 ligand
(PD-L1) was demonstrated in human specimens of brain metas-
tases from melanoma (131) and breast cancer (130), and corre-
lated with higher density of tumor-infiltrating lymphocytes
expressing PD-1, suggesting that upregulation of immune check-
points may be important for the ability of brain metastases to
evade the immune system and enhance immunosuppression.

In this context, it is also important to consider the role of
myeloid derived suppressor cells (MDSC), immature myeloid
cells with suppressive activity on T cells via immune checkpoint
signaling. While not much is known about MDSCs in brain
metastasis, they were implicated in immune suppression in neu-
roinflammatory diseases (132) and their infiltration to human
glioblastoma tumors was associated with reduced TILs in brain
lesions (133). Moreover, blockade of MDSCs was suggested to be
beneficial in combination with immune checkpoint treatment in
mouse models of glioblastoma (134) and in prevention of brain
metastasis (135), suggesting that MDSC blockade should also be
considered in immunotherapy of human brain metastasis.

Patients with brain metastasis were previously excluded from
clinical trials with immune checkpoint inhibitors, limiting the
available knowledge on the efficacy of immunotherapeutics for
brain metastasis. However, several recent clinical studies per-
formed in patients withmelanoma or in NSCLCwith active brain
metastases thatwere treated inmonotherapy or in combination of
both checkpoint inhibitors, demonstrated benefit on OS of dou-
ble checkpoint blockade (136–141), and multiple other studies
are ongoing (142). Notably, the beneficial effects of anti-CTLA-4
and anti-PD1 on brain metastasis may be mediated, in part, by
sustained systemic effects on activated T cells that infiltrate the
brain and engage in antitumor responses. This is supported by a
recent preclinical study demonstrating that efficient immune
checkpoint inhibition for the treatment of intracranialmelanoma
depended on systemic activation of CD8þ T cells and enhance-
ment of their recruitment to the brain (102). Additional clinical
findings, as well as preclinical mechanistic studies, are required to
investigate the efficacy, and provide the rationale for immune
checkpoint blockade in the treatment of brain metastasis.

Radiotherapy, a standard therapy approach for CNS tumors
and brain metastasis, was shown to induce immunostimulatory
effects that may be therapeutically beneficial, including down-
regulation of immunosuppressive cytokines, enhanced immune
cell recruitment, and increasedCTL efficacy (143). These effects on
activation of the immune response result, at least partially, from
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radiation-induced tissue damage and necrosis. However, radio-
therapy was also demonstrated to enhance the expression of PD-
L1 in tumor cells and in antigen-presenting cells in amousemodel

of breast cancer, suggesting that it may also have immunosup-
pressive effects (144). Importantly, recent preclinical and clinical
studies, which assessed the combination of radiotherapy with

Table 1. Concise summary of main findings and targetable molecules in neuroinflammation instigated in brain metastasis

Neuroinflammatory pathways or function Neuroinflammatory pathways
found in brain metastasis System Targeted? References or function in CNS pathology References

Proliferation of metastatic cells is mediated by: In vitro No (64) C/EBP-b (148)
Tumor cell secreted: MIF, IL8, and PAI-1 NFkB (149, 150)
Astrocyte secreted: IL1b, TNFa, and IL6
Tumor cell invasion to the brain is regulated by:
Astrocyte-derived: In vitro
IL23 Anti-IL23 Ab (65) Antigen presentation (66)
CCL7 shCCL7 (68) MAPK, NFkB (151)
MMP2 Anti-MMP2 Ab, (153)
MMP9 Anti-MMP9 Ab,

ONO-4817a, Leukocyte transmigration (152)
Marimastata,
Batimastata

Tumor-derived: In vivo
MMP2 NO (65)
COX-2 shCOX2, (68)
MMP1 shMMP1, GM6001b

CSC self-renewal is mediated by:
JAG1–Notch–HES5 signaling in astrocytes In vitro shHES5, shJAG1 (67) Notch (154)
IL1b secreted from tumor cells In vivo shIL1b, Compound Ec

Activated astrocytes express gliosis related gene In vitro, NO (37) STAT3, NFkB (155)
signature: Cxcl10, Lcn2, Timp1, Serpine1 In vivo

Astrocytes induce Gsta5, Bcl2l1, Twist1 expression In vitro siRNA of survival genes (77) Gap-junction intercellular (156)
in tumor cells ! chemoresistance communication

Astrocytes activate the Endothelin axis in tumor In vitro Carbenoxolone (CBX)d, (80, 81)
cells, providing chemoprotection BQ123e, BQ788e

In vivo MacitentaneþPaclitaxel (125) ET-1 is a potent vasoconstrictor (157)
Gap junctions allow communication between In vitro, CBX, (76) Gap-junction intercellular (156)
tumor cells and astrocytes In vivo shcGAS communication

Initial anti-tumorigenic responses of astrocytes to
metastasizing cells mediated via: (73)

FasL, plasminogen activator from astrocytes In vitro anti-FasL Tissue damage, Apoptosis (158)
Serpins from reactive stroma a2-antiplasmin
Tumor cells expressing L1CAM In vivo shL1CAM,

shSerpins
Microglia facilitate transport of cancer cells into In vitro WNT-inhibitor (88) Wnt/bcatenin (159)
the brain Dickkopf-2, Clodronatef

Microglia defense response is hijacked by In vitro Anti-CSF-1 Ab 5A1, (89) Microglia survival and growth (160)
carcinoma cells Anti-CD34 Ab

Depletion of the anti-inflammatory microglia/ In vivo Clodronatef (84) M1 and M2 phenotypes of (161)
macrophage cell population attenuate metastatic microglia/macrophage
colonization

Different phenotypes of metastasis-associated In vivo NO (99) Macrophages are involved in (162)
macrophages in dural vs. parenchymal metastasis neuroinflammation

NK cells and CD8þ T cells are required for efficient In vivo PD-1/CTLA-4 combined (102) Immune checkpoints are possible (163)
anti-PD-1/anti-CTLA-4 intracranial tumor response blockade therapeutic targets in AD

Adhesion and angiogenesis are mediated via: HGF attenuates autoimmunity in (164)
Tumor cell secreted IL1b, CXCL1, IL18 In vitro, Pterostilbeneg (111) experimental autoimmune
Astrocyte-derived HGF In vivo encephalitis (EAE)
Endothelial cells expressing CXCR1
STAT3 activation induces cancer cell-directed VEGF In vitro, WP1066h (119) STAT3 (165)
secretion ! STAT3 activation in endothelial cells In vivo
! upregulated VEGFR2 in endothelial cells

NOTE: Findings from preclinical studies in which targeting of neuroinflammation showed efficacy in the treatment of brain metastases, as well as targets that
may be promising.
aMMP inhibitors.
bBBB-permeable metalloproteinase inhibitor.
cA potent BBB-permeable g-secretase inhibitor.
dGap junction inhibitor.
eAntagonists of ETAR and ETBR.
fBisphosphonate.
gc-MET inhibitor.
hSTAT3 inhibitor.
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immunotherapy, found potential synergism between these two
treatment modalities (143, 145). While these results still need to
be validated in larger studies, the data suggest that combining
radiotherapy with immune checkpoint blockade may prove to be
beneficial in targeting the metastatic microenvironment to com-
bat brain metastases.

Conclusions and Future Perspectives
The incidence of brain metastasis is rising and survival remains

very poor. Therefore, there is an acute need to define mechanisms
and test novel therapeutic approaches for brain metastasis. The
accumulated knowledge gained in past years from the studies
discussedhere clearly indicate that reciprocal interactions between
tumor cells and brain stromal cells are a driving force of brain
metastasis. This is mediated partially by hijacking of physiologic
tissue damage response and immune cell trafficking pathways in
the brain microenvironment, and subsequent induction of local
neuroinflammation around the metastatic lesion (Fig. 2).

Studying the metastatic niche and mechanisms that sustain
dormancy are promising approaches toward uncovering the ear-

liest stages of metastasis. Understanding the early events that
precede the formation of brain macrometastases will greatly
advance our ability to design more efficient therapeutics. Future
studies aimed to promote this characterization should focus on
elucidating the tumor-derived and stromal cell–derived factors
that govern the instigation of neuroinflammation and vascular
changes at the premetastatic niche. To facilitate this research
direction, development of novel preclinical models of brain
metastasis that will include genetic tools for specific targeting of
candidate factors is required (some available experimental and
genetic tools are summarized in Tables 1 and 2, respectively).
Moreover, because recent studies suggest that the operative
mechanisms in micrometastases may be different than the ones
operative in full-blown brainmacrometastases (146), experimen-
tal tools that enable this distinction are also needed.

Clinical targeting of brain metastases formation at early stages
will only be feasible if diagnostic tools for patient stratification are
available. This may include identification of predictive biomar-
kers that will reflect changes in the brain microenvironment (e.g.,
circulating inflammatory proteins, circulating DNA, and tumor-
derived extracellular vesicles), or the presence of disseminated
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Reciprocal interactions between brain-metastasizing tumor cells and the brain microenvironment facilitate metastatic growth. Main findings of
neuroinflammatory networks operative in brain metastasis.
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tumor cells. Suchmarkers could potentially be identified in liquid
biopsies of blood and/or CSF and allow personalized design of
treatment approaches, following removal of primary tumors, to
monitor progression to systemic disease.

Anothermajor limitation of developingmore efficient tools for
early, preventive targeting of brain metastasis is the efficiency of
imagingmodalities (147). Insights from preclinical models of the
early stages can be applicable to human disease only if available
imagingmethodswill enable earlier diagnosis, in patientswith yet
asymptomatic brain metastatic lesions. Further studies are also
needed to thoroughly characterize cancer type–specific responses
of the brain metastatic microenvironment, as well as unifying
mechanisms that are common to the brain response during brain
metastasis originating from different tumors, to test their appli-
cability as therapeutic targets.

While knowledge from preclinical studies on the brain
metastatic microenvironment is emerging, data from clinical
studies on microenvironment targeting in the treatment of
brain metastasis therapy is still limited. Hopefully, in the

coming years, we will see integration of the preclinical findings
described in this review into the design of novel clinical
strategies aimed at prevention and better treatment of brain
metastasis.
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